一元二次方程(英文名:quadratic equation of one unknown)是指只含有一个未知数,并且未知数的最高次数是二次的整式方程,该方程式的一般形式是:ax2+bx+c=0(a≠0),其中,ax2是二次项,bx是一次项,c是常数项,a、b是常数。a≠0是一个重要条件,否则就不能保证该方程未知数的最高次数是二次。
当Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2a
当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]i}/2a(i是虚数单位)
一元二次方程配方法:
ax^2+bx+c=0(a,b,c是常数)
x^2+bx/a+c/a=0
(x+b/2a)^2=(b^2-4ac)/4a^2
x+b/2a=±(b^2-4ac)^(1/2)/2a
x=[-b±(b^2-4ac)^(1/2)]/2a
一元二次方程求根在线计算器
x2 + | x + | = 0 |
结果: | |||
查看下面更多的实例题