数线上有A、B两点,座标分别为2、12。今在A、B之间取一点C,请问:
(1)C点座标为多少时, AC×CB有最大值?
(2)C点座标为多少时, AC2+CB2有最小值?
详解:
设C点座标为x,则 AC=X-2, CB=12-X
(1) AC×CB = (X-2)(12-X)
= -(X-2)(12-X)
= -(X2-14X+24)
= -(X2-14X+49-49+24)
= -(X2-14X+49-25)
= -(X2-14X+49)+25
= -(X-7)2+25
得X=7时, AC×CB有最大值25。即C点座标为7。
(2) AC2+CB2 = (X-2)2+(12-X)2
= X2-4X+4+X2-24X+144
= 2X2-28X+148
=2(X2-14X)+148
= 2(X2-14X+49-49)+148
=2(X2-14X+49)-98+148
= 2(X-7)2+50
得 X=7时, AC2+CB2有最小值50。即C点座标为7。
查看下面更多的实例题