利用和的平方公式因式分解下列各式:
(1) (X+1)2+2(X+1) +1 (2) (X+2)2+6(X+2)+9
(3) X2+4X(y-1)+4(y-1)2 (4) (a+b)2+2(a+b)+1
(5) (X+1)2 +2(X+1)(2X-1)+(2X-1)2 (6) (2X+1)2+8(2X+1)(X-1)+16(X-1)2
(7) X2+2X+1+3X+3 (8) X2+4X+4-y2
详解:
(1) (X+1)2+2(X+1)+1
= (X+1)2+2×(X+1)×1+12
= [(X+1)+1] 2 (利用和的平方公式)
= (X+2)2
(2) (X+2)2+6(X+2)+9
= (X+2)2+2×(X+2)×3+32
= [(X+2)+3]2 (利用和的平方公式)
= (X+5)2
(3) X2+4X(y-1)+4(y-1)2
= X2+2×X×2(y-1)+[2(y-1)]2
= [X+2(y-1)]2 (利用和的平方公式)
= (X+2y-2)2
(4) (a+b)2+2(a+b)+1
= (a+b)2 +2×(a+b ) ×1+1
= [(a+b)+1]2 (利用和的平方公式)
= (a+b+1)2
(5) (X+1)2+2(X+1)(2X-1)+(2X-1)2
= (X+1)2+2×(X+1)×(2X-1)+(2X-1)2
= [(X+1)+(2X-1)]2 (利用和的平方公式)
= (3X)2
(6) (2X+1)2+8(2X+1)(X-1)+16(X-1)2
= (2X+1)2+2×(2X+1)×4(X-1)2+[4(X-1)]2
= [(2X+1)+4(X-1)]2 (利用和的平方公式)
= [2X+1+4X-4]2
= (6X-3)2
(7)X2+2X+1+3X+3
= (X2+2X+1)+(3X+3) (分组)
= (X+1)2+(3X+3) (第一组利用和的平方公式)
= (X+1)2+3(X+1) (第二组提出3)
= (X+1)[(X+1)+3](提出X+1)
= (X+1)(X+4)
(8) X2 +4X+4-y2
= (X2+4X+4)-y2 (分组)
= (X+2)2-y2 (利用和的平方公式)
= [(X+2)+y][(X+2)-y] (利用平方差公式)
= (X+y+2)(X-y+2)
查看下面更多的实例题