| 手机阅读| 用户留言 | 加入收藏 | 设为首页
懒人在线计算器
  • 您当前的位置:首页 > 代数方程

    4x^2-12x+9=5

    时间:2017-09-03 10:26:18 来源:懒人计算器 作者: 

    解方程,一元一次,二元一次,一元二次,二元二次,一元三次

    解题4x^2-12x+9=5 方程

    简化
    4x2 + -12x + 9 = 5
    
    重新排序条件:
    9 + -12x + 4x2 = 5
    
    解:
    9 + -12x + 4x2 = 5
    
    求解变量 'x'.
    
    重新排序条件:
    9 + -5 + -12x + 4x2 = 5 + -5
    
    结合相似条件: 9 + -5 = 4
    4 + -12x + 4x2 = 5 + -5
    
    结合相似条件: 5 + -5 = 0
    4 + -12x + 4x2 = 0
    
    考虑最大公约数(GCF), '4'.
    4(1 + -3x + x2) = 0
    
    忽略因数  4.
    

    子问题1

    设定因数 '(1 + -3x + x2)' 等于零并尝试解决: 简化 1 + -3x + x2 = 0 解: 1 + -3x + x2 = 0 开始做平放. 将不变的条件移到右边: 增加 '-1' 到方程的每一侧. 1 + -3x + -1 + x2 = 0 + -1 重新排序条件: 1 + -1 + -3x + x2 = 0 + -1 结合相似条件: 1 + -1 = 0 0 + -3x + x2 = 0 + -1 -3x + x2 = 0 + -1 结合相似条件: 0 + -1 = -1 -3x + x2 = -1 这个 x 项是 -3x. 取其系数的一半 (-1.5). 该平方 (2.25) 并将其添加到两侧. 增加 '2.25' 到方程的每一侧. -3x + 2.25 + x2 = -1 + 2.25 重新排序条件: 2.25 + -3x + x2 = -1 + 2.25 结合相似条件: -1 + 2.25 = 1.25 2.25 + -3x + x2 = 1.25 一个完整的平方在左侧: (x + -1.5)(x + -1.5) = 1.25 计算右边的平方根: 1.118033989 通过设置将这个问题解决成两个子问题(x + -1.5) 等于 1.118033989 和 -1.118033989.

    子问题1

    x + -1.5 = 1.118033989 简化 x + -1.5 = 1.118033989 重新排序条件: -1.5 + x = 1.118033989 解: -1.5 + x = 1.118033989 求解变量 'x'. 移动所有含x 的放右边,所有其它条件放左边. 增加 '1.5' 到方程的每一侧. -1.5 + 1.5 + x = 1.118033989 + 1.5 结合相似条件: -1.5 + 1.5 = 0.0 0.0 + x = 1.118033989 + 1.5 x = 1.118033989 + 1.5 结合相似条件: 1.118033989 + 1.5 = 2.618033989 x = 2.618033989 简化 x = 2.618033989

    子问题2

    x + -1.5 = -1.118033989 简化 x + -1.5 = -1.118033989 重新排序条件: -1.5 + x = -1.118033989 解: -1.5 + x = -1.118033989 求解变量 'x'. 移动所有含x 的放右边,所有其它条件放左边. 增加 '1.5' 到方程的每一侧. -1.5 + 1.5 + x = -1.118033989 + 1.5 结合相似条件: -1.5 + 1.5 = 0.0 0.0 + x = -1.118033989 + 1.5 x = -1.118033989 + 1.5 结合相似条件: -1.118033989 + 1.5 = 0.381966011 x = 0.381966011 简化 x = 0.381966011

    这个问题的解决方案是基于子问题的解决方案. x = {2.618033989, 0.381966011}

    x = {2.618033989, 0.381966011}
     更新:20210423 104034

    查看下面更多的实例题

    分享到:
    发表评论

     共有人参与,请您也说几句看法

     
       验证码: 看不清楚,点击刷新 看不清楚,点击刷新

    .

    如果可以键盘算的话,会跟好 lihai 跟合格的v的 很准确的转换