连分数(continued fraction)是特殊繁分数。如果a0,a1,a2,…an,…都是整数,则将分别称为无限连分数和有限连分数。可简记为a0 ,a1,a2,…,an,…和a0,a1,a2,…,an。一般一个有限连分数表示一个有理数,一个无限连分数表示一个无理数。如果a0,a1,a2,…,an,…都是实数,可将上述形式连分数分别叫无限连分数和有限连分数 。近代数学的计算需要,还可将连分数中的a0,a1 ,a2,…,an,…取成以x为变元的多项式。在近代计算数学中它常与某些微分方程式差分方程有关,与某些递推关系有关的函数构造的应用相联系。
连分数表示法是避免了实数表示的这两个问题。让我们考虑如何描述一个数如 415/93,约为 4.4624。近似为 4,而实际上比 4 多一点,约为 4 + 1/2。但是在分母中的 2 是不准确的;更准确的分母是比 2 多一点,约为 2 + 1/6,所以 415/93 近似为 4 + 1/(2 + 1/6)。但是在分母中的 6 是不准确的;更准确分母是比 6 多一点,实际是 6+1/7。所以 415/93 实际上是 4+1/(2+1/(6+1/7))。这样才准确。
去掉表达式 4 + 1/(2 + 1/(6 + 1/7)) 中的冗余部分可得到简略记号 [4; 2, 6, 7]。