三、生产决策分析(一)投入要素的最优组合
在制订生产决策时,企业管理部门必须考虑生产什么和如何生产的问题。那些长期成功的公司,对这两个问题处理得颇为出色。生产自动唱片转换器的BSR公司就是其中一例。BSR成了格莱德和其他公司不得不通过推销自己预先装配好的价廉质优的唱片转换的办法来与之竞争的劲敌。BSR公司之所以有能力低价出售其产品是因为它能在生产过程中大量节省费用,BSR公司取得这种节约部分地是通过简化唱片转换器(使用微型化电子学)和自制马达、旋转盘及其他零件。福特公司和通用汽车公司是两个另外的例子。这两个企业的长期成功至少可以部分地归因于精心的产品设计和有效的生产组织。现在有些象纳克公司这样的小钢厂能以比大钢厂更高的效率生产某些型号的钢材。这种高效率至少可以部分地归因于它们采用了象电弧高炉、连续铸造器这样的现代化设备和成功地把企业一般管理费控制在很低的水平。
对需求进行分析和估计,主要是为了解决企业生产什么、生产多少的问题。接着就要解决怎样生产才能达到最大的经济效果。这里,又有两个问题:一是投入要素怎样组合才是最优?二是产品产量怎样组合才是最优?投入要素怎样组合的问题,对现有企业来说,着重是要解决企业的作业率多高才最合理。对新建企业来说,则涉及选用什么样的技术方法和多大的生产规模问题。在管理经济学中,这些问题是通过对生产函数的分析和寻找最优解来解决的。生产函数(TheProductionFunction)反映投入与产出之间的关系。它的一般表示式为:
Q=f(x,y,…)(2.1.1)
式中:Q—代表产量;
x,y…——代表诸投入要素,如原材料、设备,劳力等。
例如,Q=2x+3y这个生产函数表示:如x投入要素投入1个单位,y投入要素投入2个单位,就可以得到某种产品的产量8个单位(=2×1+3×2)。
需要指出的是,生产函数中的产量,是指一定的投入要素组合所可能生产的最大的产品数量,也就是说,生产函数所反映的投入与产出之间的关系以企业经营管理得很好、一切投入要素的使用都非常有效为假设的。
一个生产体系的投入、产出关系取决于该生产体系中设备、原材料和劳动力等诸要素的技术水平。所以,技术的任何改进,都会导致产生新的投入、产出关系,从而产生新的生产函数。不同的生产函数代表不同的技术水平。
如果企业的产量已定,寻找最优的投入、产出关系就是寻找最优的投入要素的数量组合,这种投入要素的数量组合应能使企业以最少的费用生产出这一定量的产品来。从这个意义上讲,生产决策分析也就是对如何投入进行分析和决策。
□单一可变投入要素的最优利用
假定其他投入要素的投入量不变,只有一种投入要素的数量是可变的,研究这种投入要素的最优使用量(即这种使用量能使企业的利润最大),就属于单一可变投入要素的最优利用问题。这类问题在短期决策中经常遇到。例如,在短期内现有企业的厂房、设备都无法变更,要增加产量,只有增加劳动力,那么增加多少劳动力才是最优的呢?这就属于单一可变投入要素的最优利用问题。
□总产量、平均产量和边际产量的相互关系
下面先举例说明这三者之间的关系。
假定某印刷车间,拥有4台印刷机。如果该车间只有1名工人,这名工人的产量一定有限,因为他不能利用他的全部时间来操作印刷机,他还必须亲自做许多辅助工作,如取原料、搬运等等。现假定这时他的日产量为13单位。如果车间增加到2名工人,尽管第2名工人的才干与第1名工人相同,但增加这名工人所增加的产量一定会超过第1名工人原来的产量。这是因为有了两个人就可以进行协作,协作可以产生新的生产力。现假定增加第2名工人所增加的日产量为17单位。此时总产量从每天13单位提高到30单位。同理,假定增加到3名工人时,总产量达到每天60单位。增加到4名工人时,即每人操作1台印刷机时,总产量上升到每天104单位。如果车间工人数增加到5名,总产量将继续上升,因为新增的第5名工人可以专做搬运等辅助工作,但第5名工人增加的产量会少于第4名工人增加的产量。现假定第5名工人使日产量增加30单位,使总产量达到134单位。如果工作数目增加到6名,第6名工人可能是个替换工,即当其他工人需要休息或有病时由他来替代,这样,也能增加产量,但增加的量更少了。如果工人继续增加下去,可以设想一定会达到这样的阶段,即增加工人不仅不会增加产量,而且还会使产量减少。例如,当工人太多,许多工人无活可干、到处闲逛,以致影响生产正常进行时,就会产生这种情况。
现在把这个例子中的数据列表如下,见表217。在这里,总产量Q是指一定数量的工人所能生产的全部产量;平均产量是指每一工人的平均产量(=总产量/工人人数=Q/L);边际产量是指在一定数量劳动力时,增加1名工人引起的总产量的变化(=总产量的变化/工人人数的变化=ΔQ/ΔL)。需要指出的是,边际产量在生产决策分析中是一个很重要的概念。在这个例子中,它告诉我们,随着车间工人人数的增加,工人人数的单位变化,会给总产量带来什么影响。这一点对于寻求最优解是很有用的。
表2.1.7印刷车间每天的总产量、边际产量和平均产量
更新:20210423 103924