| 手机阅读| 用户留言 | 加入收藏 | 设为首页
懒人在线计算器
  • 您当前的位置:首页 > 几何图形公式

    给定点的曲线的切线和法线方程

    发布时间:2020-12-05 20:30:25 作者:冬青好 

    找到以下曲线的切线和法线的方程

    (1)y = x 2 -4x-5,x = -2

    (2)y = x-正弦x cos x,x =π/ 2

    (3)   y = 2正弦2 3x,x =π/ 6

    (4)   y =(1 + sin x)/ cos x,x =π/ 4时

    问题1:

    y = x 2 -4x-5,x = -2时

    当x = -2时

    y =(-2)2 -4(-2)-5

       = 4 + 8-5

    y = 7

    dy / dx = 2x-4

    dy / dx = 2(-2)-4

    dy / dx = -8

    因此,所需的点是(-2,7)

    切线方程:

    (yy 1)= m(xx 1

    (y-7)= -8(x + 2)

     y-7 = -8(x + 2)

     y-7 = -8x-16

    8x + y-7 + 16 = 0

    8x + y + 9 = 0

    正态方程:

    (yy 1)=(-1 / m)(xx 1

    (y-7)=(1/8)(x + 2)

     8(y-7)= 1(x + 2)

    8y-56 = x + 2

    x-8y + 58 = 0

    问题2 :

    y = x-正弦x cos x,x =π/ 2

    解决方案:

    当x =π/ 2时,y = x-sin x cos x。

    y =π/ 2-正弦π/ 2cosπ/ 2

    =π/ 2-(1)(0)

    =π/ 2 

    dy / dx = 1- [sin x(-sin x)+ cos x(cos x)]

    = 1-[-sin 2 x + cos 2 x]

    = 1 [cos 2 x-sin 2 x]

    = 1-cos 2x

    x =π/ 2处的切线斜率

    = 1-cos2(π/ 2)

    = 1-cosπ

    = 2

    因此,所需的点是(π/ 2,π/ 2)

    切线方程:

    (yy 1)= m(xx 1

    [y-(π/ 2)] = 2 [x-(π/ 2)]

    [y-(π/ 2)] = 2x-π

    2x-y-π+(π/ 2)= 0

    2x-y-(π/ 2)= 0

    正态方程:

    (yy 1)=(-1 / m)(xx 1

    [y-(π/ 2)] =(-1/2)[x-(π/ 2)]

    2 [y-(π/ 2)] = -1 [x-(π/ 2)]

    2y-π= -x +(π/ 2)

    x +2y-π-(π/ 2)= 0

    x + 2y-(3π/ 2)= 0

    问题3:

    y = 2sin 2 3x,在x =π/ 6

    解决方案:

    y = 2sin 2  3x

    dy / dx = 2(2sin3x)(cos3x)3

    = 6(2sin3x cos3x)  

    = 6sin 2(3x)

    = 6sin6x

    x =π/ 6处的斜率

    = 6罪孽6(π/ 6)

    = 6sinπ

    = 6(0)

    = 0

    y = 2sin 2 3x

    = 22 3(π/ 6)

    = 2sin 2(π/ 2)

    = 2

    因此,所需的点是(π/ 6,2)

    切线方程:

    (yy 1)= m(xx 1

    (y-2)= 0 [x-(π/ 6)]

     y-2 = 0

    正态方程:

    (yy 1)=(-1 / m)(xx 1

    (yy 1)=(-1/0)(xx 1

    0(y-2)= -1 [x-(π/ 6)]

    0 = -1 [x-(π/ 6)]

    x-(π/ 6)= 0

    问题4:

    y =(1 + sin x)/ cos x,x =π/ 4时

    解决方案:

    y =(1 + sin x)/ cos x

    dy / dx = [cos x(cos x)-(1 + sin x)(-sin x)] /cos²x

    = [cos 2 x + sinx + sin 2 x] / cos 2 x

    =(1 + sinx)/ cos 2 x

    x =π/ 4处的斜率

    y =(1 +sinπ/ 4)/ cos  / 4

    =(1+(1 /√2))/(1 /√2)2

    = [(√2+ 1)/√2] /(1/2)

    = [(√2+ 1)/√2]    (2/1)

    =(√2+ 1)√2

    y = 2 +2√2

    y =(1 + sin x)/ cos x

    =(1 +sinπ/ 4)/cosπ/ 4

    = [1+(1 /√2)] /(1 /√2)

    = [(√2+ 1)/√2] /(√2/ 1)

    =(√2+ 1)

    因此,所需的点是(π/ 4,(√2+ 1))

    切线方程:

    (yy 1)= m(xx 1

    [y-(√2+ 1)] =(2 +2√2)[x-(π/ 4)]

    正态方程:

    (yy 1)=(-1 / m)(xx 1

    [y-(√2+ 1)] = [-1 /(2 +2√2)] [x-(π/ 4)]


     

    更新:20210423 104225     


    .

    发表评论

     共有人参与,请您也说几句看法

     
       验证码: 看不清楚,点击刷新 看不清楚,点击刷新